The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline

Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2021, 7(4), , pp.421-425
Hauptverfasser: Mahendra Kumar, Jothi Letchumy, Rashid, Mamunur, Musa, Rabiu Muazu, Mohd Razman, Mohd Azraai, Sulaiman, Norizam, Jailani, Rozita, P.P. Abdul Majeed, Anwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 4
container_start_page 421
container_title ICT express
container_volume 7
creator Mahendra Kumar, Jothi Letchumy
Rashid, Mamunur
Musa, Rabiu Muazu
Mohd Razman, Mohd Azraai
Sulaiman, Norizam
Jailani, Rozita
P.P. Abdul Majeed, Anwar
description Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.
doi_str_mv 10.1016/j.icte.2021.01.004
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000724498300003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405959521000047</els_id><doaj_id>oai_doaj_org_article_215e4a22e4a44d9bb222b0e5ef531f48</doaj_id><sourcerecordid>S2405959521000047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-d8c075d0e8644b895abacce9091ad5d0296adb9764d9f47e76cdb1a9e9605d7e3</originalsourceid><addsrcrecordid>eNqNkUtrGzEUhYfQQkOaP9CVtqWMI2mkmVHpxgxuajAplCldCj2uHNmuZKRpQv99ZE8IXYWC0L1cznf0OFX1geAFwaS92S28mWBBMSULXBZmF9UlZZjXggv-5p_-XXWd8w5jTAQlRHSX1d14D8gcVM7eeaMmHwOKDq1Wt7VWGSx69GGPst8Gdcif0RINv8Z6TCpkBwltQKXgwxYd_REOPsD76q0rQrh-rlfVz6-rcfhWb77froflpjaMsam2vcEdtxj6ljHdC660MgYEFkTZMqeiVVaLrmVWONZB1xqriRIgWsxtB81V9XH2DcnJvfEyKn-u2yj3SS5_jGspBOWioUW7nrU2qp08Jv9bpb9n4DyIaStVmrw5gKSEA1OUlo2Vo7WmlGoMHBxviGN98aKzl0kx5wTuxY9geQpD7uQpDHkKQ-KyMCvQpxl6BB1dNh6CgRewpNFRxkTflA43Rd3_v3rw0zmzIf4JU0G_zCiUr3_wkOQzbn0CM5X3-tfu-QRFY7Gz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><source>DOAJ开放获取期刊资源库</source><creator>Mahendra Kumar, Jothi Letchumy ; Rashid, Mamunur ; Musa, Rabiu Muazu ; Mohd Razman, Mohd Azraai ; Sulaiman, Norizam ; Jailani, Rozita ; P.P. Abdul Majeed, Anwar</creator><creatorcontrib>Mahendra Kumar, Jothi Letchumy ; Rashid, Mamunur ; Musa, Rabiu Muazu ; Mohd Razman, Mohd Azraai ; Sulaiman, Norizam ; Jailani, Rozita ; P.P. Abdul Majeed, Anwar</creatorcontrib><description>Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.</description><identifier>ISSN: 2405-9595</identifier><identifier>EISSN: 2405-9595</identifier><identifier>DOI: 10.1016/j.icte.2021.01.004</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>BCI ; Computer Science ; Computer Science, Information Systems ; CWT ; EEG ; Science &amp; Technology ; SVM ; Technology ; Telecommunications ; Transfer Learning ; 전자/정보통신공학</subject><ispartof>ICT Express , 2021, 7(4), , pp.421-425</ispartof><rights>2021 The Korean Institute of Communications and Information Sciences (KICS)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000724498300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c444t-d8c075d0e8644b895abacce9091ad5d0296adb9764d9f47e76cdb1a9e9605d7e3</citedby><cites>FETCH-LOGICAL-c444t-d8c075d0e8644b895abacce9091ad5d0296adb9764d9f47e76cdb1a9e9605d7e3</cites><orcidid>0000-0002-3094-5596 ; 0000-0003-4958-6041 ; 0000-0002-0625-2327 ; 0000-0001-5332-1770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002801238$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahendra Kumar, Jothi Letchumy</creatorcontrib><creatorcontrib>Rashid, Mamunur</creatorcontrib><creatorcontrib>Musa, Rabiu Muazu</creatorcontrib><creatorcontrib>Mohd Razman, Mohd Azraai</creatorcontrib><creatorcontrib>Sulaiman, Norizam</creatorcontrib><creatorcontrib>Jailani, Rozita</creatorcontrib><creatorcontrib>P.P. Abdul Majeed, Anwar</creatorcontrib><title>The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline</title><title>ICT express</title><addtitle>ICT EXPRESS</addtitle><description>Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.</description><subject>BCI</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>CWT</subject><subject>EEG</subject><subject>Science &amp; Technology</subject><subject>SVM</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Transfer Learning</subject><subject>전자/정보통신공학</subject><issn>2405-9595</issn><issn>2405-9595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtrGzEUhYfQQkOaP9CVtqWMI2mkmVHpxgxuajAplCldCj2uHNmuZKRpQv99ZE8IXYWC0L1cznf0OFX1geAFwaS92S28mWBBMSULXBZmF9UlZZjXggv-5p_-XXWd8w5jTAQlRHSX1d14D8gcVM7eeaMmHwOKDq1Wt7VWGSx69GGPst8Gdcif0RINv8Z6TCpkBwltQKXgwxYd_REOPsD76q0rQrh-rlfVz6-rcfhWb77froflpjaMsam2vcEdtxj6ljHdC660MgYEFkTZMqeiVVaLrmVWONZB1xqriRIgWsxtB81V9XH2DcnJvfEyKn-u2yj3SS5_jGspBOWioUW7nrU2qp08Jv9bpb9n4DyIaStVmrw5gKSEA1OUlo2Vo7WmlGoMHBxviGN98aKzl0kx5wTuxY9geQpD7uQpDHkKQ-KyMCvQpxl6BB1dNh6CgRewpNFRxkTflA43Rd3_v3rw0zmzIf4JU0G_zCiUr3_wkOQzbn0CM5X3-tfu-QRFY7Gz</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Mahendra Kumar, Jothi Letchumy</creator><creator>Rashid, Mamunur</creator><creator>Musa, Rabiu Muazu</creator><creator>Mohd Razman, Mohd Azraai</creator><creator>Sulaiman, Norizam</creator><creator>Jailani, Rozita</creator><creator>P.P. Abdul Majeed, Anwar</creator><general>Elsevier B.V</general><general>Elsevier</general><general>한국통신학회</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3094-5596</orcidid><orcidid>https://orcid.org/0000-0003-4958-6041</orcidid><orcidid>https://orcid.org/0000-0002-0625-2327</orcidid><orcidid>https://orcid.org/0000-0001-5332-1770</orcidid></search><sort><creationdate>202112</creationdate><title>The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline</title><author>Mahendra Kumar, Jothi Letchumy ; Rashid, Mamunur ; Musa, Rabiu Muazu ; Mohd Razman, Mohd Azraai ; Sulaiman, Norizam ; Jailani, Rozita ; P.P. Abdul Majeed, Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-d8c075d0e8644b895abacce9091ad5d0296adb9764d9f47e76cdb1a9e9605d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BCI</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>CWT</topic><topic>EEG</topic><topic>Science &amp; Technology</topic><topic>SVM</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Transfer Learning</topic><topic>전자/정보통신공학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahendra Kumar, Jothi Letchumy</creatorcontrib><creatorcontrib>Rashid, Mamunur</creatorcontrib><creatorcontrib>Musa, Rabiu Muazu</creatorcontrib><creatorcontrib>Mohd Razman, Mohd Azraai</creatorcontrib><creatorcontrib>Sulaiman, Norizam</creatorcontrib><creatorcontrib>Jailani, Rozita</creatorcontrib><creatorcontrib>P.P. Abdul Majeed, Anwar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>DOAJ开放获取期刊资源库</collection><collection>Korean Citation Index</collection><jtitle>ICT express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendra Kumar, Jothi Letchumy</au><au>Rashid, Mamunur</au><au>Musa, Rabiu Muazu</au><au>Mohd Razman, Mohd Azraai</au><au>Sulaiman, Norizam</au><au>Jailani, Rozita</au><au>P.P. Abdul Majeed, Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline</atitle><jtitle>ICT express</jtitle><stitle>ICT EXPRESS</stitle><date>2021-12</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>421</spage><epage>425</epage><pages>421-425</pages><issn>2405-9595</issn><eissn>2405-9595</eissn><abstract>Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.icte.2021.01.004</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3094-5596</orcidid><orcidid>https://orcid.org/0000-0003-4958-6041</orcidid><orcidid>https://orcid.org/0000-0002-0625-2327</orcidid><orcidid>https://orcid.org/0000-0001-5332-1770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-9595
ispartof ICT Express , 2021, 7(4), , pp.421-425
issn 2405-9595
2405-9595
language eng
recordid cdi_webofscience_primary_000724498300003
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; DOAJ开放获取期刊资源库
subjects BCI
Computer Science
Computer Science, Information Systems
CWT
EEG
Science & Technology
SVM
Technology
Telecommunications
Transfer Learning
전자/정보통신공학
title The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20classification%20of%20EEG-based%20wink%20signals:%20A%20CWT-Transfer%20Learning%20pipeline&rft.jtitle=ICT%20express&rft.au=Mahendra%20Kumar,%20Jothi%20Letchumy&rft.date=2021-12&rft.volume=7&rft.issue=4&rft.spage=421&rft.epage=425&rft.pages=421-425&rft.issn=2405-9595&rft.eissn=2405-9595&rft_id=info:doi/10.1016/j.icte.2021.01.004&rft_dat=%3Celsevier_webof%3ES2405959521000047%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2405959521000047&rft_doaj_id=oai_doaj_org_article_215e4a22e4a44d9bb222b0e5ef531f48&rfr_iscdi=true