The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research inv...
Gespeichert in:
Veröffentlicht in: | ICT express 2021, 7(4), , pp.421-425 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets. |
---|---|
ISSN: | 2405-9595 2405-9595 |
DOI: | 10.1016/j.icte.2021.01.004 |