The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline

Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2021, 7(4), , pp.421-425
Hauptverfasser: Mahendra Kumar, Jothi Letchumy, Rashid, Mamunur, Musa, Rabiu Muazu, Mohd Razman, Mohd Azraai, Sulaiman, Norizam, Jailani, Rozita, P.P. Abdul Majeed, Anwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2021.01.004