Single source precursor route to nanometric tin chalcogenides

Low-temperature solution phase synthesis of nanomaterials using designed molecular precursors enjoys tremendous advantages over traditional high-temperature solid-state synthesis. These include atomic-level control over stoichiometry, homogeneous elemental dispersion and uniformly distributed nanopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-11, Vol.5 (46), p.17346-1736
Hauptverfasser: Brune, Veronika, Raydan, Nidal, Sutorius, Anja, Hartl, Fabian, Purohit, Bhagyesh, Gahlot, Sweta, Bargiela, Pascal, Burel, Laurence, Wilhelm, Michael, Hegemann, Corinna, Atamtürk, Ufuk, Mathur, Sanjay, Mishra, Shashank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-temperature solution phase synthesis of nanomaterials using designed molecular precursors enjoys tremendous advantages over traditional high-temperature solid-state synthesis. These include atomic-level control over stoichiometry, homogeneous elemental dispersion and uniformly distributed nanoparticles. For exploiting these advantages, however, rationally designed molecular complexes having certain properties are usually required. We report here the synthesis and complete characterization of new molecular precursors containing direct Sn-E bonds (E = S or Se), which undergo facile decomposition under different conditions (solid/solution phase, thermal/microwave heating, single/mixed solvents, varying temperatures, etc .) to afford phase-pure or mixed-phase tin chalcogenide nanoflakes with defined ratios. Phase controled chemical synthesis of 2D SnE x (E = S, Se; x = 1, 2) using new, well-characterized molecular precursors is presented.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt02964a