Validation of Bone Density and Microarchitecture Measurements of the Load-Bearing Femur in the Human Knee Obtained Using In Vivo HR-pQCT Protocol

High resolution peripheral quantitative computed tomography (HR-pQCT) was designed to study bone mineral density (BMD) and microarchitecture in peripheral sites at the distal radius and tibia. With the introduction of the second generation HR-pQCT scanner (XtremeCT II, Scanco Medical) that has a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical densitometry 2021-10, Vol.24 (4), p.651-657
Hauptverfasser: Keen, Christopher E., Whittier, Danielle E., Firminger, Colin R., Edwards, W Brent, Boyd, Steven K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High resolution peripheral quantitative computed tomography (HR-pQCT) was designed to study bone mineral density (BMD) and microarchitecture in peripheral sites at the distal radius and tibia. With the introduction of the second generation HR-pQCT scanner (XtremeCT II, Scanco Medical) that has a larger, longer gantry it is now possible to study the human knee in vivo using HR-pQCT. Previous validation of HR-pQCT measurements at the distal radius and tibia against micro-CT is not representative of the knee because the increased cross-sectional area, greater amount of soft tissue surrounding the scan region, and different imaging protocol result in potentially increased beam hardening effects and photon scatter and different signal-to-noise ratio. The objective of this study is to determine the accuracy of density and microarchitecture measurements in the human knee measured by HR-pQCT using an in vivo protocol. Twelve fresh-frozen cadaver knees were imaged using in vivo HR-pQCT (60.7 µm) protocol. Subsequentially, distal femurs were extracted and imaged using a higher resolution (30.3 µm) ex vivo protocol, replicating micro-CT imaging. Scans were registered so that agreement of density and bone microarchitecture measurements could be determined using linear regression and Bland-Altman plots. All density and microarchitecture outcomes were highly correlated between the 2 protocols (R2 > 0.89) albeit with statistically significant differences between absolute measures based on paired t tests. All parameters showed accuracy between 4.5% and 8.7%, and errors were highly systematic, particularly for trabecular BMD and trabecular thickness (R2 > 0.93). We found that BMD and microarchitecture measurements in the distal femur obtained using an in vivo HR-pQCT knee protocol contained systematic errors, and accurately represented measurements obtained using a micro-CT equivalent imaging protocol. This work establishes the validity and limitations of using HR-pQCT to study the BMD and microarchitecture of human knees in future clinical studies.
ISSN:1094-6950
1559-0747
DOI:10.1016/j.jocd.2021.01.004