Improved Adhesion and Tribological Properties of AlTiN-TiSiN Coatings Deposited by DCMS and HiPIMS on Nitrided Tool Steels
Hard coatings, such as AlTiN-TiSiN, deposited by Physical Vapor Deposition (PVD) techniques are widely used in industrial applications to protect and increase the lifetime of industrial components, such as cutting tools, dies, and forming tools. Despite their great properties, such as high hardness...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-10, Vol.11 (10), p.1175, Article 1175 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hard coatings, such as AlTiN-TiSiN, deposited by Physical Vapor Deposition (PVD) techniques are widely used in industrial applications to protect and increase the lifetime of industrial components, such as cutting tools, dies, and forming tools. Despite their great properties, such as high hardness and wear and oxidation resistance, they are limited in cases of severe conditions due to the poor adhesion between the coating and the substrate. Duplex treatments have commonly been used to improve the adhesive properties of PVD coatings, especially those of the cathodic arc evaporation type. The purpose of this study is to achieve coatings with the good properties of the Magnetron Sputtering processes but with higher adhesion than that achieved with these techniques, thus achieving coatings that can be used under the most severe conditions. In this work, an AlTiN-TiSiN coating was deposited by a combination of DC Magnetron Sputtering (DCMS) and High-Power Impulse Magnetron Sputtering (HiPIMS) after a gas nitriding pretreatment on 1.2379 and Vanadis 4 tool steels. Mechanical (ultra-microhardness and scratch tests) and tribological tests were carried out to study the improvement in the properties of the coating. Duplex-treated samples showed improved adhesion between the coating and the substrate, with second critical load (Lc2) values greater than 100 N. Furthermore, they showed great toughness and wear resistance. These results show that this type of coating technique could be used in the most extreme applications and that they can compete with other techniques and coatings that to date they have not been able to compete with. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings11101175 |