Aerodynamic analysis of hummingbird-like hovering flight
Flapping wing micro aerial vehicles are studied as the substitute for fixed and rotary wing micro aerial vehicles because of the advantages such as agility, maneuverability, and employability in confined environments. Hummingbird's sustainable hovering capability inspires many researchers to de...
Gespeichert in:
Veröffentlicht in: | Bioinspiration & biomimetics 2021-11, Vol.16 (6), p.66018, Article 066018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flapping wing micro aerial vehicles are studied as the substitute for fixed and rotary wing micro aerial vehicles because of the advantages such as agility, maneuverability, and employability in confined environments. Hummingbird's sustainable hovering capability inspires many researchers to develop micro aerial vehicles with similar dynamics. In this research, a wing of a ruby-throated hummingbird is modeled as an insect wing using membrane and stiffeners. The effect of flexibility on the aerodynamic performance of a wing in hovering flight has been studied numerically by using a fluid-structure interaction scheme at a Reynolds number of 3000. Different wings have been developed by using different positions and thicknesses of the stiffeners. The chordwise and spanwise flexural stiffnesses of all the wings modeled in this work are comparable to insects of similar span and chord length. When the position of the stiffener is varied, the best-performing wing has an average lift coefficient of 0.51. Subsequently, the average lift coefficient is increased to 0.56 when the appropriate thickness of the stiffeners is chosen. The best flexible wing outperforms its rigid counterpart and produces lift and power economy comparable to a real hummingbird's wing. That is, the average lift coefficient and power economy of 0.56 and 0.88 for the best flexible wing as compared to 0.61 and 1.07 for the hummingbird's wing. It can be concluded that a simple manufacturable flexible wing design based on appropriate positioning and thickness of stiffeners can serve as a potential candidate for bio-inspired flapping-wing micro aerial vehicles. |
---|---|
ISSN: | 1748-3182 1748-3190 |
DOI: | 10.1088/1748-3190/ac28eb |