Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Core–Shell Nanowires

We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of C3N5 is a low-band-gap (E g = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP). C3N5 nanosheets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (40), p.47418-47439
Hauptverfasser: Alam, Kazi M, Jensen, Charles E, Kumar, Pawan, Hooper, Riley W, Bernard, Guy M, Patidar, Aakash, Manuel, Ajay P, Amer, Naaman, Palmgren, Anders, Purschke, David N, Chaulagain, Narendra, Garcia, John, Kirwin, Phillip S, Shoute, Lian C.T, Cui, Kai, Gusarov, Sergey, Kobryn, Alexander E, Michaelis, Vladimir K, Hegmann, Frank A, Shankar, Karthik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of C3N5 is a low-band-gap (E g = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP). C3N5 nanosheets were either wrapped around CdS nanorods (NRs) following the synthesis of pristine chalcogenide or intercalated among them by an in situ synthesis protocol to form two kinds of heterostructures, CdS-MHP and CdS-MHPINS, respectively. CdS-MHP improved the photocatalytic degradation rate of 4-nitrophenol by nearly an order of magnitude in comparison to bare CdS NRs. CdS-MHP also enhanced the sunlight-driven photocatalytic activity of bare CdS NWs for the decolorization of rhodamine B (RhB) by a remarkable 300% through the improved extraction and utilization of photogenerated holes due to surface passivation. More interestingly, CdS-MHP provided reaction pathway control over RhB degradation. In the absence of scavengers, CdS-MHP degraded RhB through the N-deethylation pathway. When either hole scavenger or electron scavenger was added to the RhB solution, the photocatalytic activity of CdS-MHP remained mostly unchanged, while the degradation mechanism shifted to the chromophore cleavage (cycloreversion) pathway. We investigated the optoelectronic properties of CdS-C3N5 heterojunctions using density functional theory (DFT) simulations, finite difference time domain (FDTD) simulations, time-resolved terahertz spectroscopy (TRTS), and photoconductivity measurements. TRTS indicated high carrier mobilities >450 cm2 V–1 s–1 and carrier relaxation times >60 ps for CdS-MHP, while CdS-MHPINS exhibited much lower mobilities
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c08550