Light bridges can suppress the formation of coronal loops

ABSTRACT A light bridge is a magnetic intrusion into a sunspot, it interacts with the main magnetic field and excites a variety of dynamical processes. In the letter, we studied magnetic connectivity between a light bridge and coronal loops rooted at the sunspot. We used the data of the Atmospheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-09, Vol.506 (1), p.L35-L39
Hauptverfasser: Miao, Yuhu, Fu, Libo, Du, Xian, Yuan, Ding, Jiang, Chaowei, Su, Jiangtao, Zhao, Mingyu, Anfinogentov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT A light bridge is a magnetic intrusion into a sunspot, it interacts with the main magnetic field and excites a variety of dynamical processes. In the letter, we studied magnetic connectivity between a light bridge and coronal loops rooted at the sunspot. We used the data of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory(SDO) to study the features of sunspots with light bridges. It is found that if a light bridge anchors at the umbra-penumbra boundary, the coronal loops could not be formed around the anchoring point. If the a light bridge become detached from the penumbra, the coronal loop starts to form again. The vector magnetogram provided by the Helioseismic Magnetic Imager onboard SDO shows that the anchoring region of a light bridge usually have an accompanying opposite minor-polarities. We conjugate that the magnetic field line could connect to these opposite polarities and form short-range magnetic loops, and therefore, coronal loops that extend to long-range could not be formed. A model of light bridge is proposed to explain the magnetic connectivity between a light bridge and the coronal loops. This model could explain many physical processes associated with light bridges.
ISSN:1745-3925
0035-8711
1745-3933
1365-2966
DOI:10.1093/mnrasl/slab071