Capacitive and Conductometric Type Dual-Mode Relative Humidity Sensor Based on 5,10,15,20-tetra Phenyl Porphyrinato Nickel (II) (TPPNi)

(1) Background: A quest for a highly sensitive and reliable humidity monitoring system for a diverse variety of applications is quite vital. Specifically, the ever-increasing demand of humidity sensors in applications ranging from agriculture to healthcare equipment (to cater the current demand of C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-09, Vol.13 (19), p.3336, Article 3336
Hauptverfasser: Akram, Rizwan, Yaseen, Muhammad, Farooq, Zahid, Rauf, Ayesha, Almohaimeed, Ziyad M., Ikram, Muhammad, Zafar, Qayyum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: A quest for a highly sensitive and reliable humidity monitoring system for a diverse variety of applications is quite vital. Specifically, the ever-increasing demand of humidity sensors in applications ranging from agriculture to healthcare equipment (to cater the current demand of COVID-19 ventilation systems), calls for a selection of suitable humidity sensing material. (2) Methods: In the present study, the TPPNi macromolecule has been synthesized by using a microwave-assisted synthesis process. The layer structure of the fabricated humidity sensor (Al/TPPNi/Al) consists of pair of planar 120 nm thin aluminum (Al) electrodes (deposited by thermal evaporation) and similar to 160 nm facile spin-coated solution-processable organic TPPNi as an active layer between the similar to 40 mu m electrode gap. (3) Results: Electrical properties (capacitance and impedance) of sensors were found to be substantially sensitive not only on relative humidity but also on the frequency of the input bias signal. The proposed sensor exhibits multimode (capacitive and conductometric) operation with significantly higher sensitivity similar to 146.17 pF/%RH at 500 Hz and 48.23 k Omega/%RH at 1 kHz. (4) Conclusions: The developed Al/TPPNi/Al surface type humidity sensor's much-improved detecting properties along with reasonable dynamic range and response time suggest that it could be effective for continuous humidity monitoring in multi environmental applications.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13193336