Continuous wave vertical emission from terahertz microcavity lasers with a dual injection scheme

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-10, Vol.29 (21), p.33602-33614
Hauptverfasser: Ottomaniello, Andrea, Conte, Gloria, Pitanti, Alessandro, Vicarelli, Leonardo, Profeti, Alessandro, Beere, Harvey E., Ritchie, David A., Mattoli, Virgilio, Bianco, Federica, Tredicucci, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.3 THz is obtained at 10 K with 6.4 mA threshold current and 145 mW/A slope efficiency up to 320 mu W emitted power measured in quasi-CW mode. The tuning of the laser emission directionality is also obtained by independently varying the pumping strength between the microdisks. By connecting the resonators through a suspended gold bridge, the laser out-coupling efficiency in the vertical direction is strongly enhanced. Owing to the high brightness, low-power consumption and CW operation, the proposed microcavity laser design could allow the realization of high-performance CW THz QCLs ready for massive parallelization. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.430742