Influence of subscapularis stiffness with glenosphere lateralization on physiological external rotation limits after reverse shoulder arthroplasty
Repair of the subscapularis following reverse shoulder arthroplasty (RSA) remains a controversial topic among surgeons. Poor rotator cuff muscle quality is associated with increased musculotendinous stiffness, and the subsequent effect of compromised tissue repair on RSA functional outcomes remains...
Gespeichert in:
Veröffentlicht in: | Journal of shoulder and elbow surgery 2021-11, Vol.30 (11), p.2629-2637 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Repair of the subscapularis following reverse shoulder arthroplasty (RSA) remains a controversial topic among surgeons. Poor rotator cuff muscle quality is associated with increased musculotendinous stiffness, and the subsequent effect of compromised tissue repair on RSA functional outcomes remains unclear. The objective was to investigate the influence of subscapularis stiffness together with glenoid component lateralization on pre- and postimpingement joint mechanics during external rotation after RSA.
A validated finite element model incorporating the Zimmer Trabecular Metal reverse system was used. The deltoid and subscapularis tendon were tensioned and wrapped around the joint prior to controlled shoulder external rotation. Baseline subscapularis stiffness, determined from cadaveric testing, was varied to 80%, 120% and 140% of baseline, to simulate a range of pliability associated with fatty infiltration and fibrosis. We evaluated the effects of varying subscapularis stiffness and the corresponding variation in joint tension with varying glenosphere lateralization (2, 4, and 10 mm) on the torque required to externally rotate the shoulder and the impingement/subluxation risk.
Prior to any impingement, the torques required to externally rotate the shoulder ranged from 22-47 Nm across the range of parameters studied, with the greatest torques required for the 10-mm glenosphere lateralization. The impact of increasing subscapularis stiffness on torque requirements was most pronounced at the 10-mm lateralization, as well. A 20% increase in subscapularis stiffness necessitated a 7%-14% increase in preimpingement torque, whereas a 40% stiffness increase was associated with a 12%-27% increase in torque. Torque was proportional to lateralization. When lateralization was increased from 2 to 4 mm, the preimpingement torque increased by 10%-13%, whereas a 10-mm lateralization necessitated a 35%-62% torque increase relative to 2 mm of lateralization. Increased subscapularis stiffness did not limit impingement-free range of motion or substantially decrease postimpingement subluxation in this model.
Mechanical gains achieved through lateralization may be hindered by increased torque demands, especially when a stiffer subscapularis is repaired. As lateralization increases subscapularis tension, greater torque is required to externally rotate the shoulder. The torque required for external rotation has been reported between 15-50 Nm. Subscapularis repair with the simul |
---|---|
ISSN: | 1058-2746 1532-6500 |
DOI: | 10.1016/j.jse.2021.04.039 |