The Boltzmann Equation for Uniform Shear Flow
The uniform shear flow for rarefied gas is governed by the time-dependent spatially homogeneous Boltzmann equation with a linear shear force. The main feature of such flow is that the temperature may increase in time due to the shearing motion that induces viscous heat, and the system strays far fro...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2021-12, Vol.242 (3), p.1947-2002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The uniform shear flow for rarefied gas is governed by the time-dependent spatially homogeneous Boltzmann equation with a linear shear force. The main feature of such flow is that the temperature may increase in time due to the shearing motion that induces viscous heat, and the system strays far from equilibrium. For Maxwell molecules, we establish the unique existence, regularity, shear-rate-dependent structure and non-negativity of self-similar profiles for any small shear rate. The non-negativity is justified through the large time asymptotic stability even in spatially inhomogeneous perturbation framework, and the exponential rates of convergence are also obtained with the size proportional to the second order shear rate. This analysis supports the numerical result that the self-similar profile admits an algebraic high-velocity tail that is the key difficulty to overcome in the proof. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-021-01717-5 |