A convolutional neural network-based classification of local earthquakes and tectonic tremors in Sanriku-oki, Japan, using S-net data
Low-frequency tremors have been widely detected in many tectonic zones, and are often located adjacent to megathrust zones, indicating that their spatiotemporal evolution provides important insights into megathrust events. The envelope correlation method (ECM) is commonly used to detect tremors. How...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2021-10, Vol.73 (1), p.1-10, Article 186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-frequency tremors have been widely detected in many tectonic zones, and are often located adjacent to megathrust zones, indicating that their spatiotemporal evolution provides important insights into megathrust events. The envelope correlation method (ECM) is commonly used to detect tremors. However, the ECM also detects regular earthquakes, which requires the separation of these two signals after the initial detection. In addition, signals of tremors are weak, so classifying tremors from noises is also an essential problem. We develop a convolutional neural network (CNN)-based method using a single S-net station located off Sanriku region, Northeast Japan, to classify local earthquakes, tremors, and noise. Along the Japan Trench, especially in a region focused in this study, local earthquakes and tremors occurred in coexistence within a small region, so detection, location, and discrimination of these events are the key to understand the relationship between slow and regular earthquakes. The spectrograms of the three-component velocity waveforms that were recorded during 16 August 2016 to 14 August 2018 are used as the training and test datasets for the CNN. The CNN successfully classified 100%, 96%, and 98% of the earthquakes, tremors, and noise, respectively. We also showed a successful application of our method to continuous waveform data including a tremor to explore the feasibility of the proposed method in classifying tremors and noise in continuous streaming data. The output probabilities for the true classifications decrease with increasing epicentral distance and/or decreasing event magnitude. This highlights the need to train the CNN using tremors proximal to the seismic stations for detecting tremors using multiple stations. |
---|---|
ISSN: | 1880-5981 1343-8832 1880-5981 |
DOI: | 10.1186/s40623-021-01524-y |