Progenitor mass distribution for 22 historic core-collapse supernovae
We infer the progenitor mass distribution for 22 historic core-collapse supernovae (CCSNe) using a Bayesian hierarchical model. For this inference, we use the local star formation histories to estimate the age for each supernova (SN). These star formation histories often show multiple bursts of star...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2021-09, Vol.506 (1), p.781-790 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We infer the progenitor mass distribution for 22 historic core-collapse supernovae (CCSNe) using a Bayesian hierarchical model. For this inference, we use the local star formation histories to estimate the age for each supernova (SN). These star formation histories often show multiple bursts of star formation; our model assumes that one burst is associated with the SN progenitor and the others are random bursts of star formation. The primary inference is the progenitor age distribution. Due to the limited number of historic SNe and highly uncertain star formation at young ages, we restrict our inference to the slope of the age distribution and the maximum age for CCSNe. Using single-star evolutionary models, we transform the progenitor age distribution into a progenitor mass distribution. Under these assumptions, the minimum mass for CCSNe is M-min = 8.60(-0.41)(+0.37) M-circle dot and the slope of the progenitor mass distribution is alpha = -2.61(-1.18)(+1.05). The power-law slope for the progenitor mass distribution is consistent with the standard Salpeter initial mass function (alpha = -2.35). These values are consistent with previous estimates using precursor imaging and the age-dating technique, further confirming that using stellar populations around SN and supernova remnants is a reliable way to infer the progenitor masses. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab1800 |