Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation

In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is developed for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-09, Vol.104 (3), p.035308-035308, Article 035308
Hauptverfasser: Chen, Xinmeng, Chai, Zhenhua, Shang, Jinlong, Shi, Baochang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is developed for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM. We also conduct the von Neumann stability analysis on the present MRT-FDLBM and its special case, i.e., single-relaxation time finite-difference lattice Boltzmann method (SRT-FDLBM). Then, a simplified version of MRT-FDLBM (SMRT-FDLBM) is also proposed, which can save about 15% computational cost. In addition, a series of real and complex-value NCDEs, including the isotropic convection-diffusion equation, Burgers-Fisher equation, sine-Gordon equation, heat-conduction equation, and Schrodinger equation, are used to test the performance of MRT-FDLBM. The results show that both MRT-FDLBM and SMRT-FDLBM have second-order convergence rates in space and time. Finally, the stability and accuracy of five different models are compared, including the MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method [H. Wang, B. Shi et al., Appl. Math. Comput. 309, 334 (2017)], and the lattice Boltzmann method (LBM). The stability tests show that the sequence of stability from high to low is as follows: MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method, and LBM. In most of the precision test results, it is found that the order from high to low of precision is MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, and the previous finite-difference lattice Boltzmann method.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.104.035308