Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation
In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is developed for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2021-09, Vol.104 (3), p.035308-035308, Article 035308 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is developed for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM. We also conduct the von Neumann stability analysis on the present MRT-FDLBM and its special case, i.e., single-relaxation time finite-difference lattice Boltzmann method (SRT-FDLBM). Then, a simplified version of MRT-FDLBM (SMRT-FDLBM) is also proposed, which can save about 15% computational cost. In addition, a series of real and complex-value NCDEs, including the isotropic convection-diffusion equation, Burgers-Fisher equation, sine-Gordon equation, heat-conduction equation, and Schrodinger equation, are used to test the performance of MRT-FDLBM. The results show that both MRT-FDLBM and SMRT-FDLBM have second-order convergence rates in space and time. Finally, the stability and accuracy of five different models are compared, including the MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method [H. Wang, B. Shi et al., Appl. Math. Comput. 309, 334 (2017)], and the lattice Boltzmann method (LBM). The stability tests show that the sequence of stability from high to low is as follows: MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method, and LBM. In most of the precision test results, it is found that the order from high to low of precision is MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, and the previous finite-difference lattice Boltzmann method. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.104.035308 |