Neural network-based prediction of the long-term time-dependent mechanical behavior of laminated composite plates with arbitrary hygrothermal effects
Recurrent neural network (RNN)-based accelerated prediction was achieved for the long-term time-dependent behavior of viscoelastic composite laminated Mindlin plates subjected to arbitrary mechanical and hygrothermal loading. Time-integrated constitutive stress-strain relation was simplified via Lap...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2021, 35(10), , pp.4643-4654 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recurrent neural network (RNN)-based accelerated prediction was achieved for the long-term time-dependent behavior of viscoelastic composite laminated Mindlin plates subjected to arbitrary mechanical and hygrothermal loading. Time-integrated constitutive stress-strain relation was simplified via Laplace transform to a linear system to reduce the computational storage. A fast converging smooth finite element method named cell-based smoothed discrete shear gap was employed to enhance the data generation procedure for straining RNNs with a sparse mesh. This technique is applicable under varying hygrothermal conditions for real engineering structure problems with fluctuating temperature and moisture. Hence, accurate RNN-based long-term deformation prediction for laminated structures was realized using the history of environmental temperature and moisture condition. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-021-0932-2 |