SYMPLECTIC RATIONAL G-SURFACES AND EQUIVARIANT SYMPLECTIC CONES
We give characterizations of a finite group G acting symplectically on a rational surface (CP2 blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of G-conic bundles versus G-del Pezzo surfaces for the corresponding G-rational surfaces, analogous to a clas...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2021-10, Vol.119 (2), p.221-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give characterizations of a finite group G acting symplectically on a rational surface (CP2 blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of G-conic bundles versus G-del Pezzo surfaces for the corresponding G-rational surfaces, analogous to a classical result in algebraic geometry. Besides the characterizations of the group G (which is completely determined for the case of CP2 #N (CP2) over bar, N = 2, 3, 4), we also investigate the equivariant symplectic minimality and equivariant symplectic cone of a given G-rational surface. |
---|---|
ISSN: | 0022-040X 1945-743X |
DOI: | 10.4310/jdg/1632506334 |