On the Growth and Development of Non‐Linear Kelvin–Helmholtz Instability at Mars: MAVEN Observations

In this study, we have analyzed Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of fields and plasma signatures associated with an encounter of fully developed Kelvin–Helmholtz (K–H) vortices at the northern polar terminator along Mars' induced magnetosphere boundary. The signatures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2021-09, Vol.126 (9), p.n/a, Article 2021
Hauptverfasser: Poh, Gangkai, Espley, Jared R., Nykyri, Katariina, Fowler, Christopher M., Ma, Xuanye, Xu, Shaosui, Hanley, Gwen, Romanelli, Norberto, Bowers, Charles, Gruesbeck, Jacob, DiBraccio, Gina A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we have analyzed Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of fields and plasma signatures associated with an encounter of fully developed Kelvin–Helmholtz (K–H) vortices at the northern polar terminator along Mars' induced magnetosphere boundary. The signatures of the K–H vortices event are: (a) quasi‐periodic, “bipolar‐like” sawtooth magnetic field perturbations, (b) corresponding density decrease, (c) tailward enhancement of plasma velocity for both protons and heavy ions, (d) co‐existence of magnetosheath and planetary plasma in the region prior to the sawtooth magnetic field signature (i.e., mixing region of the vortex structure), and (e) pressure enhancement (minimum) at the edge (center) of the sawtooth magnetic field signature. Our results strongly support the scenario for the non‐linear growth of K–H instability along Mars’ induced magnetosphere boundary, where a plasma flow difference between the magnetosheath and induced‐magnetospheric plasma is expected. Our findings are also in good agreement with 3‐dimensional local magnetohydrodynamics simulation results. MAVEN observations of protons with energies greater than 10 keV and results from the Walén analyses suggests the possibility of particle energization within the mixing region of the K–H vortex structure via magnetic reconnection, secondary instabilities or other turbulent processes. We estimate the lower limit on the K–H instability linear growth rate to be ∼5.84 × 10−3 s−1. For these vortices, we estimate the instantaneous atmospheric ion escape flux due to the detachment of plasma clouds during the late non‐linear stage of K–H instability to be ∼5.90 × 1026 particles/s. Extrapolation of loss rates integrated across time and space will require further work. Key Points Mars Atmosphere and Volatile EvolutioN (MAVEN) observed magnetic field and plasma signatures consistent with the encounter of fully developed Kelvin–Helmholtz (K–H) vortices along Mars’ induced magnetospheric boundary (IMB) Close agreement between 3‐D magnetohydrodynamics simulation result and MAVEN observation support the scenario for K–H instability occurrence along Mars’ IMB We estimated the instantaneous atmospheric ion escape flux due to detachment of plasma clouds from K–H instability to be ∼5.9 × 1026 s−1
ISSN:2169-9380
2169-9402
DOI:10.1029/2021JA029224