Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction

The S-scheme 0D/2D heterostructure with InVO4 quantum dots and g-C3N4 ultrathin nanosheets is constructed for highly active and selective photocatalytic CO2 reduction. [Display omitted] •The S-scheme 0D/2D heterostructure with InVO4 quantum dots and g-C3N4 ultrathin nanosheets is constructed.•The 0D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2021-12, Vol.298, p.120521, Article 120521
Hauptverfasser: Gong, Shuaiqi, Teng, Xue, Niu, Yanli, Liu, Xuan, Xu, Mingze, Xu, Chen, Ji, Lvlv, Chen, Zuofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The S-scheme 0D/2D heterostructure with InVO4 quantum dots and g-C3N4 ultrathin nanosheets is constructed for highly active and selective photocatalytic CO2 reduction. [Display omitted] •The S-scheme 0D/2D heterostructure with InVO4 quantum dots and g-C3N4 ultrathin nanosheets is constructed.•The 0D/2D hybrid enables highly selective CO2 reduction to CO (93.3%) at a decent rate under visible light irradiation.•The DFT analyses reveal that the formation of 0D/2D heterostructure can activate CO2 and stabilize COOH* intermediates. Zero-dimensional quantum dots (QDs) and two-dimensional nanosheets represent two kinds of distinctive materials with unique properties. Here, we describe the fabrication of step-scheme (i.e. S-scheme) 0D/2D heterostructure with InVO4 QDs and g-C3N4 (CN) ultrathin nanosheets for photocatalytic CO2 reduction. The formation of S-scheme heterostructure facilitates the separation of electron-hole pairs and reduces the recombination of charge carriers. Moreover, the light-absorption edge of InVO4/CN is extended to 605 nm because of the strong visible light absorption of InVO4 QDs. The 0D/2D hybrid enables highly selective photocatalytic reduction of CO2 to CO (93.3 %) at a decent rate of 69.8 μmol g−1 h−1 under visible light irradiation. Density functional theory (DFT) results suggest that the formation of InVO4/CN heterostructure can enhance CO2 adsorption/activation, stabilize COOH* intermediates and allow rapid CO desorption as the major product. This study opens up a new possibility for construction of novel S-scheme heterostructure for photocatalytic applications.
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2021.120521