Arkadia-SKI/SnoN signaling differentially regulates TGF-beta-induced iTreg and Th17 cell differentiation
TGF-beta signaling is fundamental for both Th17 and regulatory T (Treg) cell differentiation. However, these cells differ in requirements for downstream signaling components, such as SMAD effectors. To further characterize mechanisms that distinguish TGF-beta signaling requirements for Th17 and Treg...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2021-11, Vol.218 (11), Article 20210777 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TGF-beta signaling is fundamental for both Th17 and regulatory T (Treg) cell differentiation. However, these cells differ in requirements for downstream signaling components, such as SMAD effectors. To further characterize mechanisms that distinguish TGF-beta signaling requirements for Th17 and Treg cell differentiation, we investigated the role of Arkadia (RNF111), an E3 ubiquitin ligase that mediates TGF-beta signaling during development. Inactivation of Arkadia in CD4(+) T cells resulted in impaired Treg cell differentiation in vitro and loss of RORyt(+)FOXP3(+ )iTreg cells in the intestinal lamina propria, which increased susceptibility to microbiota-induced mucosal inflammation. In contrast, Arkadia was dispensable for Th17 cell responses. Furthermore, genetic ablation of two Arkadia substrates, the transcriptional corepressors SKI and SnoN, rescued Arkadia-deficient iTreg cell differentiation both in vitro and in vivo. These results reveal distinct TGF-beta signaling modules governing Th17 and iTreg cell differentiation programs that could be targeted to selectively modulate T cell functions. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20210777 |