Bilayer Quantum Hall States in an n‑Type Wide Tellurium Quantum Well
Tellurium (Te) is a narrow bandgap semiconductor with a unique chiral crystal structure. The topological nature of electrons in the Te conduction band can be studied by realizing n-type doping using atomic layer deposition (ALD) technique on two-dimensional (2D) Te film. In this work, we fabricated...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-09, Vol.21 (18), p.7527-7533 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tellurium (Te) is a narrow bandgap semiconductor with a unique chiral crystal structure. The topological nature of electrons in the Te conduction band can be studied by realizing n-type doping using atomic layer deposition (ALD) technique on two-dimensional (2D) Te film. In this work, we fabricated and measured the double-gated n-type Te Hall–bar devices, which can operate as two separate or coupled electron layers controlled by the top gate and back gate. Profound Shubnikov–de Haas (SdH) oscillations are observed in both top and bottom electron layers. Landau level hybridization between two layers, compound and charge-transferable bilayer quantum Hall states at filling factor ν = 4, 6, and 8, are analyzed. Our work opens the door for the study of Weyl physics in coupled bilayer systems of 2D materials. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c01705 |