Evaluation of the aging of elastomeric acrylonitrile‐butadiene rubber and ethylene‐propylene‐diene monomer gaskets used to seal plates heat exchanger

Acrylonitrile‐butadiene rubber (NBR) and ethylene‐propylene‐diene monomer (EPDM) gaskets are used as seals in plates heat exchangers due to their elasticity and resilience. However, contact with fluids, oxygen, ozone, and heat lead to permanent deformation. This study investigates the degradation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2021-12, Vol.61 (12), p.3001-3016
Hauptverfasser: Souza, Elias Luiz, Souza Zanzi, Mateus, Paiva, Kleber Vieira, Goes Oliveira, Jorge Luiz, Monteiro, André Sampaio, Oliveira Barra, Guilherme Mariz, Dutra, Gabriel Benedet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acrylonitrile‐butadiene rubber (NBR) and ethylene‐propylene‐diene monomer (EPDM) gaskets are used as seals in plates heat exchangers due to their elasticity and resilience. However, contact with fluids, oxygen, ozone, and heat lead to permanent deformation. This study investigates the degradation of gaskets submitted to similar service conditions: compressed in a groove for up to 360 h at 100 and 120°C. The analysis was carried through compression set (CS), compression stress relaxation, surface morphology, Shore A hardness, indentation modulus profile, crosslink density, and Fourier transform infrared region with attenuated total reflection analysis. For EPDM, in thermo‐oxidative aging there is a counterbalance between chain scission and crosslinking, which increases CS while hardness and crosslink density remain low. For NBR, diffusion‐limited oxidation causes heterogeneous oxidation, creating a crosslinking network near the surface. The values for CS, Shore A hardness, and crosslink density raised to 50%, 10%, and 75%, respectively. Furthermore, the side thermo‐oxidation was reduced due to the presence of the groove, which reduces oxygen access. Using FITR analysis, a thermo‐oxidative interaction mechanism was proposed for the EPDM and NBR gaskets. It was concluded that EPDM presented a more reliable behavior for the gasket and seal applications under the analyzed conditions. Graphical of the steps involved in this study.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.25813