Localization of Electrical Defects in Hybrid Bonding Interconnect Structures by Scanning Photocapacitance Microscopy

We report a scanning photocapacitance microscopy technique for the localization of open electrical defects in hybrid bonding wafer-to-wafer (W2W) interconnect structures for 3-D system integration. Whereas the well-known optical beam induced resistance change (OBIRCH) method is effective for the loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-7, Article 3523907
Hauptverfasser: Jacobs, Kristof J. P., Stucchi, Michele, Beyne, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a scanning photocapacitance microscopy technique for the localization of open electrical defects in hybrid bonding wafer-to-wafer (W2W) interconnect structures for 3-D system integration. Whereas the well-known optical beam induced resistance change (OBIRCH) method is effective for the localization of resistive opens and shorts, it cannot be applied on full electrical opens. Our approach uses a focused laser beam to stimulate the photocapacitance of the W2W interconnect, and by measuring its response, we can verify the electrical continuity of the structure. We show how illuminating the interconnects with the light of a suitable wavelength leads to an increase of the depletion capacitance due to carrier generation in the silicon substrate. Our measurement instrument uses a commercially available sigma-delta ( \Sigma -\Delta ) capacitance-to-digital converter (CDC) chip with a capacitance sensing resolution down to 4 aF. We demonstrate this methodology on large open-failed W2W interconnect chains with sub-micrometer hybrid-bonded interconnect pad dimensions and confirm our results by optical and transmission electron microscopy (TEM).
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2021.3108531