Mean field approach applied to surface deposition on a modified electrode
In this work we study the deposition phenomena on a modified electrode in the framework of the mean field theory. The electrode surface is modified by irreversible deposition of impurities which can block a fraction of the adsorption sites. Then, an electroactive species is allowed to adsorb on the...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-09, Vol.23 (36), p.2247-2254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study the deposition phenomena on a modified electrode in the framework of the mean field theory. The electrode surface is modified by irreversible deposition of impurities which can block a fraction of the adsorption sites. Then, an electroactive species is allowed to adsorb on the accessible sites, transferring electric charge and generating a current that can be calculated and measured. Nearest-neighbor lateral interactions are considered both between electroactive particles and between particles and impurities. A modified Bragg-Williams theoretical approach considers both the blocking effects of impurities and the lateral interactions, through different concentrations of impurities and particles. The analysis is based on the study of adsorption isotherms and voltammograms, considering different interaction energies and impurity concentrations. The potentialities and limitations of the analytical approximation are discussed by comparing theoretical predictions with Monte Carlo simulations and experimental measurements in which artificial clay represents the impurity and a [Fe(CN)
6
]
4
redox probe is the species that transfers the charge.
In this work we study the deposition phenomena on a modified electrode in the framework of the mean field theory. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp03487a |