Tau phosphorylation and OPA1 proteolysis are unrelated events: Implications for Alzheimer's Disease

The neuropathological hallmarks of Alzheimer's Disease are plaques and neurofibrillary tangles. Yet, Alzheimer's is a complex disease with many contributing factors, such as energy-metabolic changes, which have been documented in autopsy brains from individuals with Alzheimer's and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular cell research 2021-11, Vol.1868 (12), p.119116-119116, Article 119116
1. Verfasser: Alavi, Marcel V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neuropathological hallmarks of Alzheimer's Disease are plaques and neurofibrillary tangles. Yet, Alzheimer's is a complex disease with many contributing factors, such as energy-metabolic changes, which have been documented in autopsy brains from individuals with Alzheimer's and animal disease models alike. One conceivable explanation is that the interplay of age-related extracellular and intracellular alterations pertaining to Alzheimer's, such as cerebrovascular changes, protein aggregates and inflammation, evoke a mitochondrial response. However, it is not clear if and how mitochondria can contribute to Alzheimer's pathophysiology. This study focuses on one particular aspect of this question by investigating the functional interaction between the microtubule-associated protein tau and the mitochondrial inner membrane fusion machinery, which shows alterations in Alzheimer's brains. OPA1 is an essential inner membrane-fusion protein regulated by the two membrane proteases OMA1 and YME1L1. Assessment of OPA1 proteolysis—usually found in dividing mitochondria—and posttranslational tau modifications in mouse and human neuroblastoma cells under different experimental conditions clarified the relationship between these two pathways: OPA1 hydrolysis and phosphorylation or dephosphorylation of tau may coincide, but are not causally related. OPA1 cleavage did not alter tau's phosphorylation pattern. Conversely, tau's phosphorylation state did not induce nor correlate with OPA1 proteolysis. These results irrefutably demonstrate that there is no direct functional interaction between posttranslational tau modifications and the regulation of the OMA1-OPA1 pathway, which implies a common root cause modulating both pathways in Alzheimer's. •Damaged mitochondria a cause for, the consequence of, or coincide with Alzheimer's?•OMA1-dependent OPA1 proteolysis is a signature event of mitochondrial damage.•This study demonstrates that OPA1 cleavage does not cause tau hyperphosphorylation.•Furthermore, tau hyperphosphorylation does not activate OMA1.•Concluding, tau and OPA1/OMA1 may act in parallel but are functionally independent.
ISSN:0167-4889
1879-2596
DOI:10.1016/j.bbamcr.2021.119116