Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on Dendropsophus minutus tadpoles

Herbicides improve the productivity of a monoculture by eliminating weeds, although they may also be toxic and have negative effects on non-target organisms, such as amphibians. The present study evaluated the genotoxic, mutagenic, and histopathological hepatic responses of Dendropsophus minutus tad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2021-11, Vol.289, p.117911, Article 117911
Hauptverfasser: Lopes, Alice, Benvindo-Souza, Marcelino, Carvalho, Wanessa Fernandes, Nunes, Hugo Freire, de Lima, Phamella Neres, Costa, Matheus Santos, Benetti, Edson José, Guerra, Vinicius, Saboia-Morais, Simone Maria Teixeira, Santos, Carolina Emilia, Simões, Karina, Bastos, Rogério Pereira, de Melo e Silva, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herbicides improve the productivity of a monoculture by eliminating weeds, although they may also be toxic and have negative effects on non-target organisms, such as amphibians. The present study evaluated the genotoxic, mutagenic, and histopathological hepatic responses of Dendropsophus minutus tadpoles to acute exposure (96 h) to the herbicide glyphosate (GLY, 65, 130, 260 and 520 μg/L) and the surfactant polyoxyethylene amine (POEA, 1.25, 2.5, 5 and 10 μg/L). On average, 174 % more genomic damage was observed in the tadpoles exposed to all concentrations of POEA in comparison with the control, while up to seven times more micronuclei were recorded, on average, at a concentration of 5 μg/L of POEA. All the individuals exposed to 10 μg/L of POEA died. The tadpoles exposed to GLY presented 165 % more DNA damage than the control, on average, at the highest concentrations (260 and 520 μg/L), and up to six times more micronuclei at 520 μg/L. The Erythrocyte Nuclear Abnormality test (ENA) detected a relatively high frequency of cells with lobed nuclei in the tadpoles expose to POEA at 5 μg/L and binucleated cells in those exposed to GLY at 520 μg/L. The hepatic histopathological observations revealed several types of lesions in the tadpoles exposed to both GLY and POEA. Overall, then, the results of the study indicate that both GLY and POEA have potential genotoxic, mutagenic, and hepatotoxic effects in D. minutus tadpoles. We emphasize the need for further studies to monitor the amphibian populations, such as those of D. minutus, which breed in aquatic environments associated with agricultural areas. The release of pollutants into natural habitats may have significant long-term impacts on the survival of anuran tadpoles. [Display omitted] •Exposure to GLY and POEA can cause DNA damage to D. minutus tadpoles.•GLY concentrations higher than the allowed by the Brazilian legislation are toxic to D. minutus.•We demonstrated histopathological alterations in the liver of D. minutus tadpoles.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2021.117911