Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions

The use of statistical models and machine-learning techniques along satellite-derived aerosol optical depth (AOD) is a promising method to estimate ground-level particulate matter with an aerodynamic diameter of

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-08, Vol.13 (16), p.3102, Article 3102
Hauptverfasser: Carmona, Johana M., Gupta, Pawan, Lozano-Garcia, Diego F., Vanoye, Ana Y., Hernandez-Paniagua, Ivan Y., Mendoza, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of statistical models and machine-learning techniques along satellite-derived aerosol optical depth (AOD) is a promising method to estimate ground-level particulate matter with an aerodynamic diameter of
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13163102