Alfalfa Established Successfully in Intercropping with Corn in the Midwest US

Integrating alfalfa (Medicago sativa L.) with corn (Zea mays L.) for grain will increase biodiversity, reduce the negative environmental impact of corn monoculture and increase farm profitability. The objectives of this research were to evaluate forage productivity and nutritive value, along with st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2021-08, Vol.11 (8), p.1676, Article 1676
Hauptverfasser: Berti, Marisol T., Cecchin, Andrea, Samarappuli, Dulan P., Patel, Swetabh, Lenssen, Andrew W., Moore, Ken J., Wells, Samantha S., Kazula, Maciej J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrating alfalfa (Medicago sativa L.) with corn (Zea mays L.) for grain will increase biodiversity, reduce the negative environmental impact of corn monoculture and increase farm profitability. The objectives of this research were to evaluate forage productivity and nutritive value, along with stand establishment of alfalfa in a corn grain system in Iowa, Minnesota, and North Dakota. The experimental design was a randomized complete block with four replicates at each site. Treatments included were: sole corn (i.e., check; T1), sole alfalfa (T2), alfalfa intercropped into corn (T3), a prohexadione-treated alfalfa intercropped with corn (T4), and a spring-seeded alfalfa in the year after intercropping (T5), which was planted in plots with T1 the previous year. All sites had below normal rainfall in 2016 and 2017. Corn grain yield was significantly lower when intercropped with alfalfa (T3 and T4) compared with the check corn crop (no alfalfa, T1). Corn grain yield reduction ranged from 14.0% to 18.8% compared with the check (T1). Corn biomass yield was reduced by intercropped alfalfa (T3 and T4) by 15.9% to 25.8%. In the seeding year, alfalfa seasonal forage yield was significantly greater when corn competition was absent in all environments. The intercropped alfalfa from the previous season (T3 and T4) had almost double the forage yield than the alfalfa in the seeding year (spring-seeded alfalfa; T5). In the second production year, there were no meaningful forage yield differences (p > 0.05) across all treatments, indicating alfalfa in intercropping systems does not affect forage yield past the first production year. Prohexadione-calcium, a growth regulator, did not affect alfalfa stand density, forage yield and nutritive value. The forage nutritive value was dependent on harvest date not the alfalfa intercropping treatments. Results of our study suggest that establishing alfalfa with corn is feasible and can be a potential alternative for the upper Midwest region. However, when under drought conditions, this system might be less resilient since competition between alfalfa and corn for soil moisture will be intensified under drought or moisturelimited conditions, and this will likely depress corn grain yield. Research targeted to reintroduce perennial crops into the current dominant corn-soybean systems in the US Corn Belt is urgently needed to improve stability and resiliency of production systems.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy11081676