Nanoparticles derived from porcine bone soup attenuate oxidative stress-induced intestinal barrier injury in Caco-2 cell monolayer model

[Display omitted] •A large number of nanoparticles occurred in porcine bone soup.•Their interaction with intestinal cells should be noted, but is barely studied yet.•Those particles restored intestinal barrier dysfunction caused by oxidative stress.•They restored oxidative stress caused damages on T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional foods 2021-08, Vol.83, p.104573, Article 104573
Hauptverfasser: Gao, Guanzhen, Zhou, Jianwu, Jin, Yongyang, Wang, Huiqin, Ding, Yanan, Zhou, Jingru, Ke, Lijing, Rao, Pingfan, Chong, Pik Han, Wang, Qiang, Zhang, Longxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •A large number of nanoparticles occurred in porcine bone soup.•Their interaction with intestinal cells should be noted, but is barely studied yet.•Those particles restored intestinal barrier dysfunction caused by oxidative stress.•They restored oxidative stress caused damages on TJs and AJs related proteins. Safety concerns arose on the interaction between nanoparticles in food and intestinal tract. Food components could spontaneously assemble into a large number of nanoparticles during food processing. These nanoparticles may possess physiological effects differed from those of constituent components, are worth paying attention to, but are barely investigated yet, especially on their interaction with intestinal tract. Porcine bone soup is rich in nanoparticles, which can directly interact with oral macrophages disclosed by our previous study. In this study, the effects of bone soup nanoparticles on intestinal barrier function were subsequently evaluated on Caco-2 cell monolayers. The results revealed the nanoparticles did not develop but restore intestinal barrier dysfunction compared with engineered nanoparticles, indicated by barrier integrity, sodium fluorescein permeability, tight junctions and adherent junctions related proteins. These results showed the potential of bone soup nanoparticles on improving intestinal disorders, which resonated with traditional knowledge on the efficacies of bone soup.
ISSN:1756-4646
2214-9414
DOI:10.1016/j.jff.2021.104573