Cryo-EM Structure of the Photosynthetic LH1-RC Complex from Rhodospirillum rubrum
Rhodospirillum (Rsp.) rubrum is one of the most widely used model organisms in bacterial photosynthesis. This purple phototroph is characterized by the presence of both rhodoquinone (RQ) and ubiquinone as electron carriers and bacteriochlorophyll (BChl) a esterified at the propionic acid side chain...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2021-08, Vol.60 (32), p.2483-2491 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rhodospirillum (Rsp.) rubrum is one of the most widely used model organisms in bacterial photosynthesis. This purple phototroph is characterized by the presence of both rhodoquinone (RQ) and ubiquinone as electron carriers and bacteriochlorophyll (BChl) a esterified at the propionic acid side chain by geranylgeraniol (BChl a G) instead of phytol. Despite intensive efforts, the structure of the light-harvesting-reaction center (LH1-RC) core complex from Rsp. rubrum remains at low resolutions. Using cryo-EM, here we present a robust new view of the Rsp. rubrum LH1-RC at 2.76 Å resolution. The LH1 complex forms a closed, slightly elliptical ring structure with 16 αβ-polypeptides surrounding the RC. Our biochemical analysis detected RQ molecules in the purified LH1-RC, and the cryo-EM density map specifically positions RQ at the QA site in the RC. The geranylgeraniol side chains of BChl a G coordinated by LH1 β-polypeptides exhibit a highly homologous tail-up conformation that allows for interactions with the bacteriochlorin rings of nearby LH1 α-associated BChls a G. The structure also revealed key protein–protein interactions in both N- and C-terminal regions of the LH1 αβ-polypeptides, mainly within a face-to-face structural subunit. Our high-resolution Rsp. rubrum LH1-RC structure provides new insight for evaluating past experimental and computational results obtained with this old organism over many decades and lays the foundation for more detailed exploration of light-energy conversion, quinone transport, and structure–function relationships in this pigment–protein complex. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.1c00360 |