Quantum Dynamics of Nonadiabatic Renner-Teller Effects in Atom plus Diatom Collisions

We review the quantum nonadiabatic dynamics of atom + diatom collisions due to the Renner-Teller (RT) effect, i.e., to the Hamiltonian operators that contain the total spinless electronic angular momentum L. As is well-known, this rovibronic effect is large near collinear geometries when at least on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-08, Vol.125 (31), p.6637-6652
Hauptverfasser: Gamallo, Pablo, Gonzalez, Miguel, Petrongolo, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review the quantum nonadiabatic dynamics of atom + diatom collisions due to the Renner-Teller (RT) effect, i.e., to the Hamiltonian operators that contain the total spinless electronic angular momentum L. As is well-known, this rovibronic effect is large near collinear geometries when at least one of the interacting states is doubly degenerate. In general, this occurs in insertion reactions and at short-range, where the potential wells exhibit deep minima and support metastable complexes. Initial-state-resolved reaction probabilities, integral cross sections, and thermal rate constants are calculated via the real wavepacket method, solving the equation of motion with an approximated or with an exact spinless RT Hamiltonian. We present the dynamics of 10 single-channel or multichannel reactions showing how RT effects depend on the product channels and comparing with the Born-Oppenheimer (BO) approximation or coexisting conical-intersection (CI) interactions. RT effects not only can significantly modify the adiabatic dynamics or correct purely CI results, but also they can be very important in opening collision channels which are closed at the BO or CI level, as in electronic-quenching reactions. In the OH(A(2)Sigma(+)) + Kr electronic quenching, where both nonadiabatic effects (CI and RT) coexist, they are in competition because CI dominates the reactivity but RT couplings reduce the large CI cross section and open a CI-forbidden evolution toward products, so that CI + RT quantum results are in good agreement with experimental or semiclassical findings. The different roles of these couplings are due to the unlike nuclear geometries where they are large: rather far from or near to linearity for CI or RT, respectively. The OH(A(2)Sigma(+)) + Kr electronic quenching was investigated with the exact RT Hamiltonian, validating the approximated one, which was employed for all other collisions.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c04654