NAC blocks Cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients

Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To eva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-03, Vol.12 (1), p.1827-1827, Article 1827
Hauptverfasser: March, Michael E., Gutierrez-Uzquiza, Alvaro, Snorradottir, Asbjorg Osk, Matsuoka, Leticia S., Balvis, Noelia Fonseca, Gestsson, Thorgeir, Nguyen, Kenny, Sleiman, Patrick M. A., Kao, Charlly, Isaksson, Helgi J., Bragason, Birkir Thor, Olafsson, Elias, Palsdottir, Astridur, Hakonarson, Hakon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50–90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents. HCCAA is a dominantly inherited disease which causes brain hemorrhages as a result of mutant cystatin C aggregation in carriers. Here, the authors show that n- acetyl cysteine can prevent aggregation of mutant protein in a cell model system and reverse protein deposition in the skin of mutation-carrying subjects.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22120-4