Hierarchical pattern recognition for tourism demand forecasting

This study proposes a hierarchical pattern recognition method for tourism demand forecasting. The hierarchy consists of three tiers: the first tier recognizes the calendar pattern of tourism demand, identifying work days and holidays and integrating “floating holidays.” The second tier recognizes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tourism management (1982) 2021-06, Vol.84, p.104263, Article 104263
Hauptverfasser: Hu, Mingming, Qiu, Richard T.R., Wu, Doris Chenguang, Song, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a hierarchical pattern recognition method for tourism demand forecasting. The hierarchy consists of three tiers: the first tier recognizes the calendar pattern of tourism demand, identifying work days and holidays and integrating “floating holidays.” The second tier recognizes the tourism demand pattern in the data stream for different calendar pattern groups. The third tier generates forecasts of future tourism demand. Evidence from daily tourist visits to three attractions in China shows that the proposed method is effective in forecasting daily tourism demand. Moreover, the treatment of “floating holidays” turns out to be more effective and flexible than the commonly adopted dummy variable approach.
ISSN:0261-5177
1879-3193
DOI:10.1016/j.tourman.2020.104263