Robust identification of topological phase transition by self-supervised machine learning approach
We propose a systematic methodology to identify the topological phase transition through a self-supervised machine learning model, which is trained to correlate system parameters to the non-local observables in time-of-flight experiments of ultracold atoms. Different from the conventional supervised...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2021-08, Vol.23 (8), p.83021, Article 083021 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a systematic methodology to identify the topological phase transition through a self-supervised machine learning model, which is trained to correlate system parameters to the non-local observables in time-of-flight experiments of ultracold atoms. Different from the conventional supervised learning approach, where the predicted phase transition point is very sensitive to the training region and data labeling, our self-supervised learning approach identifies the phase transition point by the largest deviation of the predicted results from the known system parameters and by the highest confidence through a systematic shift of the training regions. We demonstrate the robust application of this approach results in various 1D and 2D exactly solvable models, using different input features (time-of-flight images, spatial correlation function or density-density correlation function). As a result, our self-supervised approach should be a very general and reliable method for many condensed matter or solid state systems to observe new states of matters solely based on experimental measurements, even without a priori knowledge of the phase transition models. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ac1709 |