Experimental requirements for entangled two-photon spectroscopy

Coherently controlling the spectral properties of energy-entangled photons is a key component of future entangled two-photon spectroscopy schemes that are expected to provide advantages with respect to classical methods. We present here an experimental setup based on a grating compressor. It allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-08, Vol.155 (6), p.064201-064201, Article 064201
Hauptverfasser: Lerch, Stefan, Stefanov, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coherently controlling the spectral properties of energy-entangled photons is a key component of future entangled two-photon spectroscopy schemes that are expected to provide advantages with respect to classical methods. We present here an experimental setup based on a grating compressor. It allows for the spectral shaping of entangled photons with a sevenfold increase in resolution, compared to previous setups with a prism compressor. We evaluate the performances of the shaper by detecting sum frequency generation in a nonlinear crystal with both classical pulses and entangled photon pairs. The efficiency of both processes is experimentally compared and is in accordance with a simple model relating the classical and entangled two-photon absorption coefficients. Finally, the entangled two-photon shaping capability is demonstrated by implementing an interferometric transfer function.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0050657