The classification of free algebras of orthogonal modular forms

We prove a necessary and sufficient condition for the graded algebra of automorphic forms on a symmetric domain of type IV being free. From the necessary condition, we derive a classification result. Let $M$ be an even lattice of signature $(2,n)$ splitting two hyperbolic planes. Suppose $\Gamma$ is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2021-09, Vol.157 (9), p.2026-2045
1. Verfasser: Wang, Haowu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a necessary and sufficient condition for the graded algebra of automorphic forms on a symmetric domain of type IV being free. From the necessary condition, we derive a classification result. Let $M$ be an even lattice of signature $(2,n)$ splitting two hyperbolic planes. Suppose $\Gamma$ is a subgroup of the integral orthogonal group of $M$ containing the discriminant kernel. It is proved that there are exactly 26 groups $\Gamma$ such that the space of modular forms for $\Gamma$ is a free algebra. Using the sufficient condition, we recover some well-known results.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X21007429