Employing Equivalent Circuit Models to Study the Performance of Selenium‐Based Solar Cells with Polymers as Hole Transport Layers
Selenium(Se)‐based solar cells (SSCs), known as one of the oldest solar cells, have regained intense attention due to the advantages of Se including direct bandgap, good stability, and single absorber. Among all kinds of device structures, conventional n‐i‐p SSCs with top organic hole transport laye...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-09, Vol.17 (36), p.e2101226-n/a, Article 2101226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selenium(Se)‐based solar cells (SSCs), known as one of the oldest solar cells, have regained intense attention due to the advantages of Se including direct bandgap, good stability, and single absorber. Among all kinds of device structures, conventional n‐i‐p SSCs with top organic hole transport layers (HTLs) show great potential since organic HTLs could be well‐designed to smoothly extract holes from the Se single absorber and protect the Se surface. However, till now, the performance of Se solar cells with organic HTLs is not as good as expected. To address this issue, herein, the SSCs are first presented with organic polymers as the HTLs with the improved efficiency up to 4.3%, which is the highest one in organic HTLs‐based SSCs. Additionally, comparing with perovskite solar cells, it is found that the recombination process is the key factor that influences the performance of SSCs. It is believed that the further optimization of the Se active layer and the design of new and suitable organic HTLs for SSCs should be the main focus to suppress the undesired recombination processes of Se films. Such realization would boost the efficiency of the as‐fabricated SSCs.
In this research, polymer‐based selenium‐based solar cells (SSCs) have been presented and the efficiency of fabricated SSCs has been pushed to 4.3%. Through analyzing two equivalent circuit models, it could be found out that the suppressed recombination processes in the selenium layer could lead to higher performance of SSCs. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202101226 |