Unveiling redox-boosted mesoporous Co@NiO–SiO2 hybrid composite with hetero-morphologies as an electrode candidate for durable hybrid supercapacitors

The nanoscale morphology and mesoporosity have a substantial effect on the energy storage properties because they offer a high surface area and porous nature. The former one bestows the accessibility of more redox-active sites, while the latter facilitates the easy entry of foreign atoms. In this re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2021-07, Vol.13, p.1899-1907
Hauptverfasser: Chandra Sekhar, S., Lee, Jun-Hyeok, Cho, Eun-Bum, Yu, Jae Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nanoscale morphology and mesoporosity have a substantial effect on the energy storage properties because they offer a high surface area and porous nature. The former one bestows the accessibility of more redox-active sites, while the latter facilitates the easy entry of foreign atoms. In this report, we rationally synthesized the mesoporous NiO–SiO2 material with hetero-morphologies by a simple wet-chemical method, followed by calcination. The hetero-morphologies include nanospheres, nanoflakes, and nanoparticles collectively increased the surface area. To further increase the redox activity, the cobalt was hydrothermally doped to the NiO–SiO2 material (Co@NiO–SiO2). Consequently, the Co@NiO–SiO2 electrode demonstrated superior electrochemical response with a higher capacity of 41.7 μAh cm−2 compared to the NiO–SiO2 electrode (25 μAh cm−2) in a three-electrode system. Moreover, the Co@NiO–SiO2 electrode was sustained up to 10,000 cycles by retaining 95.5% of its initial capacity. The ability of the Co@NiO–SiO2 material towards practical applicability was also unveiled by fabricating a hybrid supercapacitor (HSC). The HSC delivered a notable energy density (42.3 μWh cm−2) and power density (10.2 mW cm−2). Furthermore, the HSC exhibited outstanding durability (10,000 cycles) without fading. The ability of HSC was also tested by energizing light-emitting diodes.
ISSN:2238-7854
2214-0697
DOI:10.1016/j.jmrt.2021.05.104