Giant Spin Splitting in Chiral Perovskites Based on Local Electrical Field Engineering
Chiral hybrid organic–inorganic perovskites (chiral HOIPs) present potential spintronic and spin-optoelectronic applications due to their unique spin-related properties. However, the spin physics in chiral HOIPs has rarely been explored by theoretical studies. Here, with first-principles calculation...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-07, Vol.12 (28), p.6492-6498 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chiral hybrid organic–inorganic perovskites (chiral HOIPs) present potential spintronic and spin-optoelectronic applications due to their unique spin-related properties. However, the spin physics in chiral HOIPs has rarely been explored by theoretical studies. Here, with first-principles calculations, we investigate the spin characteristics of the Pb-I based chiral HOIPs and propose an effective approach to significantly increase the spin splitting with a halogen-substituted chiral molecule. Compared to the value of 13 meV without halogen substitution, the spin splitting energy can be significantly enhanced to 73, 90, and 105 meV with F, Cl, and Br substitution, respectively. A k·p model Hamiltonian based on a symmetry argument reveals that the halogen substitution enhances the local electric field, inducing distortion of the PbI6 octahedron. Further calculation demonstrates that halogen substitution can strongly modify the electrostatic potential surface of the chiral molecules. This work presents an effective molecular engineering approach to modulate spin splitting of chiral HOIPs, shedding light on the design of spintronic materials. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.1c01675 |