Meta-FSEO: A Meta-Learning Fast Adaptation with Self-Supervised Embedding Optimization for Few-Shot Remote Sensing Scene Classification

The performance of deep learning is heavily influenced by the size of the learning samples, whose labeling process is time consuming and laborious. Deep learning algorithms typically assume that the training and prediction data are independent and uniformly distributed, which is rarely the case give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-07, Vol.13 (14), p.2776, Article 2776
Hauptverfasser: Li, Yong, Shao, Zhenfeng, Huang, Xiao, Cai, Bowen, Peng, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of deep learning is heavily influenced by the size of the learning samples, whose labeling process is time consuming and laborious. Deep learning algorithms typically assume that the training and prediction data are independent and uniformly distributed, which is rarely the case given the attributes and properties of different data sources. In remote sensing images, representations of urban land surfaces can vary across regions and by season, demanding rapid generalization of these surfaces in remote sensing data. In this study, we propose Meta-FSEO, a novel model for improving the performance of few-shot remote sensing scene classification in varying urban scenes. The proposed Meta-FSEO model deploys self-supervised embedding optimization for adaptive generalization in new tasks such as classifying features in new urban regions that have never been encountered during the training phase, thus balancing the requirements for feature classification tasks between multiple images collected at different times and places. We also created a loss function by weighting the contrast losses and cross-entropy losses. The proposed Meta-FSEO demonstrates a great generalization capability in remote sensing scene classification among different cities. In a five-way one-shot classification experiment with the Sentinel-1/2 Multi-Spectral (SEN12MS) dataset, the accuracy reached 63.08%. In a five-way five-shot experiment on the same dataset, the accuracy reached 74.29%. These results indicated that the proposed Meta-FSEO model outperformed both the transfer learning-based algorithm and two popular meta-learning-based methods, i.e., MAML and Meta-SGD.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13142776