Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study

Solar energy transformation technologies are increasingly being used worldwide in the district heating sector. In the Baltic states, only one district heating company has implemented a large-scale solar collector field into its thermal energy production system, which is analyzed within this research...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-07, Vol.14 (14), p.4171, Article 4171
Hauptverfasser: Polikarpova, Ilze, Kakis, Roberts, Pakere, Ieva, Blumberga, Dagnija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar energy transformation technologies are increasingly being used worldwide in the district heating sector. In the Baltic states, only one district heating company has implemented a large-scale solar collector field into its thermal energy production system, which is analyzed within this research. In this study, we analyzed the first year operation of the solar field, solar collector efficiency, and several influencing factors, i.e., ambient air temperature, heat carrier flow, and the temperature difference between the supply and return heat carrier temperatures. The study includes collecting and compilation of the data, analyzing influencing factors, and data analysis using the statistical analysis method. In addition, the research presents a simplified multi-regression model based on the actual performance of a large-scale solar field, which allows for forecasting the efficiency of solar collectors by taking into account the main operational parameters of the DH system. The results show that solar energy covers around 90% of the summer heat load of a particular district heating system. However, they also show room for improvements in producing all the necessary heat in the summer using solar energy. The regression analyses show that the most significant correlation between all parameters examined was obtained in May, reaching R-2 = 0.9346 in solar field efficiency evaluation. This is due to several suitable conditions for solar energy production, i.e., placing solar collectors at an angle for them to be the most productive, having enough space in the storage tank, and the demand for thermal energy being still higher than in the summer months.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14144171