Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion
Polyacetal electrolytes have been demonstrated as promising alternatives to liquid electrolytes and poly(ethylene oxide) (PEO) for rechargeable lithium-ion batteries; however, the relationship between polymer structure and ion motion is difficult to characterize. Here, we study structure–property t...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2021-07, Vol.33 (13), p.4915-4926 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polyacetal electrolytes have been demonstrated as promising alternatives to liquid electrolytes and poly(ethylene oxide) (PEO) for rechargeable lithium-ion batteries; however, the relationship between polymer structure and ion motion is difficult to characterize. Here, we study structure–property trends in ion diffusion with respect to polymer composition for a systematic series of five polyacetals with varying ratios of ethylene oxide (EO) to methylene oxide (MO) units, denoted as P(xEO-yMO), and PEO. We first use 7Li and 19F pulsed-field-gradient NMR spectroscopy to measure cation and anion self-diffusion, respectively, in polymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt mixtures. At 90 °C, we observe modest changes in Li+ diffusivity across all polymer compositions, while anion (TFSI–) self-diffusion coefficients decrease significantly with increasing MO content. At a given reduced temperature (T – T g), all polyacetal electrolytes exhibit faster Li+ self-diffusion than PEO. Intriguingly, P(EO-MO) and P(EO-2MO) also show slower TFSI– anion self-diffusion than PEO at a given reduced temperature. Molecular dynamics simulations reveal that shorter distances between acetal oxygen atoms (O–CH2–O) compared to ether oxygens (O–CH2–CH2–O) promote more diverse, often asymmetric, Li+ coordination environments. Raman spectra reveal that anion-rich ion clusters in P(EO-MO) and P(EO-2MO) lead to decreased anion diffusivity, which along with increased cation diffusivity, support the viability of polyacetals as high-performance polymer electrolytes. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.1c00339 |