A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology
Author summary The pig is an animal commonly used experimentally to study diseases of the heart, as well as investigate therapies to treat them, such as drugs. However, although similar, pigs differ from humans in certain aspects which may mean experimental results do not always directly translate b...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-06, Vol.17 (6), p.e1009137-e1009137, Article 1009137 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Author summary The pig is an animal commonly used experimentally to study diseases of the heart, as well as investigate therapies to treat them, such as drugs. However, although similar, pigs differ from humans in certain aspects which may mean experimental results do not always directly translate between species. We propose a mathematical model of porcine electrophysiology which can serve as a tool to understand differences between the species and translate responses. Using new measurements along with values from literature, we built a computer model of porcine cardiac myocyte which replicated voltage and calcium behaviour over a range of pacing frequencies. The pig cell had a two-stage calcium release, unlike humans with a single stage. We predict that pigs and humans differ in the type of potassium current block that makes them most susceptible to cardiac arrhythmia. The model we developed can elucidate important differences between human and pig arrhythmia response.
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (I-Kr and I-K1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O'Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of I-K1, while I-Kr block led to EADs in |
---|---|
ISSN: | 1553-734X 1553-7358 1553-7358 |
DOI: | 10.1371/journal.pcbi.1009137 |