Research on cutting performance in high-speed milling of TC11 titanium alloy using self-propelled rotary milling cutters
Titanium alloys are widely used in many areas, such as aerospace, biomedical, and automotive industries, due to their excellent chemical and physical properties. However, its difficult-to-machine characteristic causes various problems in the machining process, such as serious tool wear and elastic d...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-10, Vol.116 (7-8), p.2125-2135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Titanium alloys are widely used in many areas, such as aerospace, biomedical, and automotive industries, due to their excellent chemical and physical properties. However, its difficult-to-machine characteristic causes various problems in the machining process, such as serious tool wear and elastic deformation of workpieces. To achieve high efficiency and quality of machining titanium alloy materials, this paper conducted an experimental research on the high-speed milling of TC11 titanium alloy with self-propelled rotary milling cutters. In this paper, the wear mechanism of self-propelled rotary milling cutters was explored; the influence of milling velocity was analyzed on cutting process, and the variation laws with the change in milling length were obtained of milling forces, chip morphology, and machined surface quality. The calculation method of self-propelled rotary velocity was proposed, based on the experimental research. The results showed that in the early and middle stages of milling, the insert coating peeled off evenly under the joint action of abrasive and adhesive wear mechanisms. As the milling length increased, the dense notches occurred on the cutting edge of the cutter, the wear mechanism converted gradually into fatigue wear, and furthermore, coating started peeling off the cutting edge with the occurrence of thermal fatigue cracks on the insert. As the milling length was further extended, the milling forces tended to intensify, the chip deformation worsened, and the obvious cracks occurred at the bottom of chips. The increase in milling velocity intensified the friction between chips and self-propelled rotary milling cutters, and decreased the ratio of self-propelled rotary velocity to milling velocity. This caused the drop in cutting performance of cutters and the growth in tool wear rate. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-021-07592-4 |