Packing three copies of a tree into its sixth power
A graph H of order n is said to be k - p l a c e a b l e into a graph G , having the same order n , if G contains k edge-disjoint copies of H . Kaneko et al. [9] proved that any non-star tree T is 2 - p l a c e a b l e into its third power T 3 . In this paper, we give a particular interest on the 3...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2021-06, Vol.52 (2), p.558-570 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph
H
of order
n
is said to be
k
-
p
l
a
c
e
a
b
l
e
into a graph
G
, having the same order
n
, if
G
contains
k
edge-disjoint copies of
H
. Kaneko et al. [9] proved that any non-star tree
T
is
2
-
p
l
a
c
e
a
b
l
e
into its third power
T
3
. In this paper, we give a particular interest on the
3
-
p
l
a
c
e
m
e
n
t
of a tree
T
into its sixth power
T
6
. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00060-5 |