Packing three copies of a tree into its sixth power

A graph H of order n is said to be k - p l a c e a b l e into a graph G , having the same order n , if G contains k edge-disjoint copies of H . Kaneko et al. [9] proved that any non-star tree T is 2 - p l a c e a b l e into its third power T 3 . In this paper, we give a particular interest on the 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2021-06, Vol.52 (2), p.558-570
Hauptverfasser: Louleb, Tarak, Sayar, Mohamed Y., Beggas, Fairouz, Kheddouci, Hamamache
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph H of order n is said to be k - p l a c e a b l e into a graph G , having the same order n , if G contains k edge-disjoint copies of H . Kaneko et al. [9] proved that any non-star tree T is 2 - p l a c e a b l e into its third power T 3 . In this paper, we give a particular interest on the 3 - p l a c e m e n t of a tree T into its sixth power T 6 .
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-021-00060-5