NOTES ON THE K-RATIONAL DISTANCE PROBLEM
Let K be an algebraic number field. We investigate the K-rational distance problem and prove that there are infinitely many nonisomorphic cubic number fields and a number field of degree n for every $n\geq 2$ in which there is a point in the plane of a unit square at K-rational distances from the fo...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2021-08, Vol.104 (1), p.40-44 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be an algebraic number field. We investigate the K-rational distance problem and prove that there are infinitely many nonisomorphic cubic number fields and a number field of degree n for every
$n\geq 2$
in which there is a point in the plane of a unit square at K-rational distances from the four vertices of the square. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972720001288 |