NOTES ON THE K-RATIONAL DISTANCE PROBLEM

Let K be an algebraic number field. We investigate the K-rational distance problem and prove that there are infinitely many nonisomorphic cubic number fields and a number field of degree n for every $n\geq 2$ in which there is a point in the plane of a unit square at K-rational distances from the fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2021-08, Vol.104 (1), p.40-44
1. Verfasser: THO, NGUYEN XUAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K be an algebraic number field. We investigate the K-rational distance problem and prove that there are infinitely many nonisomorphic cubic number fields and a number field of degree n for every $n\geq 2$ in which there is a point in the plane of a unit square at K-rational distances from the four vertices of the square.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972720001288