Methodology for Sensitivity Analysis of Homogenized Cross-Sections to Instantaneous and Historical Lattice Conditions with Application to AP1000(R) PWR Lattice

In the two-step method for nuclear reactor simulation, lattice physics calculations are performed to compute homogenized cross-sections for a variety of burnups and lattice configurations. A nodal code is then used to perform full-core analysis using the pre-calculated homogenized cross-sections. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-06, Vol.14 (12), p.3378, Article 3378
Hauptverfasser: Price, Dean, Folk, Thomas, Duschenes, Matthew, Garikipati, Krishna, Kochunas, Brendan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the two-step method for nuclear reactor simulation, lattice physics calculations are performed to compute homogenized cross-sections for a variety of burnups and lattice configurations. A nodal code is then used to perform full-core analysis using the pre-calculated homogenized cross-sections. One source of uncertainty introduced in this method is that the lattice configuration or depletion conditions typically do not match a pre-calculated one from the lattice physics simulations. Therefore, some interpolation model must be used to estimate the homogenized cross-sections in the nodal code. This current study provides a methodology for sensitivity analysis to quantify the impact of state variables on the homogenized cross-sections. This methodology also allows for analyses of the historical effect that the state variables have on homogenized cross-sections. An application of this methodology on a lattice for the Westinghouse AP1000(R) reactor is presented where coolant density, fuel temperature, soluble boron concentration, and control rod insertion are the state variables of interest. The effects of considering the instantaneous values of the state variables, historical values of the state variables, and burnup-averaged values of the state variables are analyzed. Using these methods, it was found that a linear model that only considers the instantaneous and burnup-averaged values of state variables can fail to capture some variations in the homogenized cross-sections.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14123378