Surface Characterization of Fracture in Polylactic Acid vs. PLA plus Particle (Cu, Al, Graphene) Insertions by 3D Fused Deposition Modeling Technology

Polylactic acid (PLA) is one of the most extensively used biodegradable aliphatic polyester produced from renewable resources, such as corn starch. Due to its qualities, PLA is a leading biomaterial for numerous applications in medicine as well as in industry, replacing conventional petrochemical-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2021-06, Vol.11 (6), Article 633
Hauptverfasser: Ghiban, Brandusa, Pascu, Nicoleta Elisabeta, Antoniac, Iulian Vasile, Jiga, Gabriel, Milea, Claudia, Petre, Gabriela, Gheorghe, Cristina, Munteanu, Corneliu, Istrate, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polylactic acid (PLA) is one of the most extensively used biodegradable aliphatic polyester produced from renewable resources, such as corn starch. Due to its qualities, PLA is a leading biomaterial for numerous applications in medicine as well as in industry, replacing conventional petrochemical-based polymers. The purpose of this paper is to highlight the fracture behavior of pure PLA specimens in comparison with PLA particle insertions, (copper, aluminum and Graphene), after evaluation the mechanical properties, as well as the influence of filament angle deposition on these properties. In order to check if the filling density of the specimen influences the ultimate tensile stress (UTS), three different filling percentages (60%, 80%, and 100%) have been chosen in the experimental tests. A hierarchy concerning elongation / fiber heights after tensile testing was done. So, the highest elongation values were for simple PLA (about 4.1%), followed by PLA + Al insertion (3.2%-4%), PLA + graphene insertion (2.6%-4%) and the lowest values being for PLA with copper insertion (1.8%-2.7%). Regarding the fiber heights after fracture, the hierarchy was: the highest values was for PLA, then PLA + Al, PLA + grapheme and PLA + Cu. Finally, a correlation between fracture surfaces appearance and mechanical properties were established, being formulated the mechanism of fracture in according with filament angle deposition. Also, it was proposed a new method of evaluation of the fractured surface by measuring the dimensions of the filaments after printing Fused Deposition Modeling (FDM) and tensile testing.
ISSN:2079-6412
DOI:10.3390/coatings11060633