A New Sinusoidal Shear Deformation Theory for Static Bending Analysis of Functionally Graded Plates Resting on Winkler–Pasternak Foundations

In this article, a new sinusoidal shear deformation theory was developed for static bending analysis of functionally graded plates resting on elastic foundations. The proposed theory used an undefined integral term to reduce the number of the unknown to four without any shear correction factors. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Civil Engineering 2021, Vol.2021 (1), Article 6645211
Hauptverfasser: Phuc, Pham Minh, Thanh, Vu Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a new sinusoidal shear deformation theory was developed for static bending analysis of functionally graded plates resting on elastic foundations. The proposed theory used an undefined integral term to reduce the number of the unknown to four without any shear correction factors. The high accuracy and efficiency of the proposed theory were proved thanks to the comparisons of the present results with other available solutions. And then, the proposed theory was successfully applied to investigate the bending behavior of the functionally graded plates resting on Winkler–Pasternak foundations. The governing equations of motion were established by using Hamilton’s principle, and the Navier’s solution technique was employed to solve these equations. The effects of some factors of the geometrics, the materials properties, and the elastic foundation parameters on the bending behaviors of the FGM plates were investigated intensely. Also, some novel results and special phenomenon were carried out.
ISSN:1687-8086
1687-8094
DOI:10.1155/2021/6645211