MiR-29c downregulates tumor-expressed B7-H3 to mediate the antitumor NK-cell functions in ovarian cancer
B7-H3 is a member of the B7 family of immune checkpoint molecule. Although B7-H3 has been shown to regulate T cell-mediated peripheral immune response, whether it also correlated with NK cell exhaustion in ovarian cancer remains unclear. The purpose of this study was to explore the mechanism of B7-H...
Gespeichert in:
Veröffentlicht in: | Gynecologic oncology 2021-07, Vol.162 (1), p.190-199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | B7-H3 is a member of the B7 family of immune checkpoint molecule. Although B7-H3 has been shown to regulate T cell-mediated peripheral immune response, whether it also correlated with NK cell exhaustion in ovarian cancer remains unclear. The purpose of this study was to explore the mechanism of B7-H3 regulating NK-cell proliferation and function.
To investigate the relationship between B7-H3 expression and the NK-cell function in ovarian cancer, human ovarian tumor tissues and cell lines were first examined the protein and mRNA expression of B7-H3 by quantitative real-time PCR (qRT-PCR), Immunohistochemistry and Western-blot assays. Then we established B7-H3 knockout cell lines and measured the cytotoxicity of NK cells on these cells by LDH release assay and Flow Cytometry. In addition, we analyzed B7-H3 in the regulation of glycolysis and glycolysis-related proteins by Glycolysis Stress Test, Glucose Consumption Assay and Western-blot. Moreover, luciferase reporter assay was used to confirm the directly regulation of miR-29c to B7-H3. Finally, we carried out in vivo experiments.
We observed that tumor-expressed B7-H3 inhibits NK-cell function in vitro and in vivo, and is associated with glycolysis of ovarian cancer cell. Therapeutically, B7-H3 blockade prolonged the survival of SKOV3 tumor-bearing mice. In addition, miR-29c improved the anti-tumor efficacy of NK-cell by directly targeting B7-H3 in vitro were observed, but not in vivo.
Our results demonstrate that miR-29c downregulates B7-H3 to inhibit NK-cell exhaustion and associated with glycolysis, which suggest that NK cells may be a new target of anti-B7-H3 therapy in ovarian cancer patients.
•Tumor-expressed B7-H3 inhibits NK-cell exhaustion in vitro and in vivo.•B7-H3 blockade prolong the survival of SKOV3 tumor-bearing mice.•Tumor-expressed B7-H3 is associated with glycolysis of ovarian cancer cell.•miR-29c improved the anti-tumor efficacy of NK-cell by directly targeting B7-H3 in vitro. |
---|---|
ISSN: | 0090-8258 1095-6859 |
DOI: | 10.1016/j.ygyno.2021.04.013 |